728 research outputs found

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Recording problems and diagnoses in clinical care: developing guidance for healthcare professionals and system designers

    Get PDF
    BACKGROUND: Accurate recording of problems and diagnoses in health records is key to safe and effective patient care, yet it is often done poorly. Electronic health record systems vary in their functionality and ease of use, and are not optimally designed for easy recording and sharing of clinical information. There is a lack of professional consensus and guidance on how problems and diagnoses should be recorded. METHODS: The Professional Record Standards Body commissioned work led by the Royal College of Physicians Health Informatics Unit to carry out a literature review, draft guidance, carry out an online consultation and round table discussion, and produce a report including recommendations for systems. A patient workshop was held to explore patient preferences for mechanisms for sharing diagnosis information between primary and secondary care. RESULTS: Consensus was reached among medical specialties on key elements of diagnosis recording, and draft guidance was produced ready for piloting in a variety of care settings. Patients were keen for better ways for diagnosis information to be shared. DISCUSSION: Improving the recording of diagnoses and problems will require a major effort of which the new guidance is only a part. The guidance needs to be embedded in training, and clinical systems need to have improved, standardised functionality. Front-line clinicians, specialist societies, clinical informaticians and patients need to be engaged in developing information models for diagnoses to support care and research, accessible via user-friendly interfaces

    An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in microbial genomics and bioinformatics are offering greater insights into the emergence and spread of foodborne pathogens in outbreak scenarios. The Food and Drug Administration (FDA) has developed a genomics tool, ArrayTrack<sup>TM</sup>, which provides extensive functionalities to manage, analyze, and interpret genomic data for mammalian species. ArrayTrack<sup>TM</sup> has been widely adopted by the research community and used for pharmacogenomics data review in the FDA’s Voluntary Genomics Data Submission program. </p> <p>Results</p> <p>ArrayTrack<sup>TM</sup> has been extended to manage and analyze genomics data from bacterial pathogens of human, animal, and food origin. It was populated with bioinformatics data from public databases such as NCBI, Swiss-Prot, KEGG Pathway, and Gene Ontology to facilitate pathogen detection and characterization. ArrayTrack<sup>TM</sup>’s data processing and visualization tools were enhanced with analysis capabilities designed specifically for microbial genomics including flag-based hierarchical clustering analysis (HCA), flag concordance heat maps, and mixed scatter plots. These specific functionalities were evaluated on data generated from a custom Affymetrix array (FDA-ECSG) previously developed within the FDA. The FDA-ECSG array represents 32 complete genomes of <it>Escherichia coli</it> and<it> Shigella.</it> The new functions were also used to analyze microarray data focusing on antimicrobial resistance genes from <it>Salmonella</it> isolates in a poultry production environment using a universal antimicrobial resistance microarray developed by the United States Department of Agriculture (USDA).</p> <p>Conclusion</p> <p>The application of ArrayTrack<sup>TM</sup> to different microarray platforms demonstrates its utility in microbial genomics research, and thus will improve the capabilities of the FDA to rapidly identify foodborne bacteria and their genetic traits (e.g., antimicrobial resistance, virulence, etc.) during outbreak investigations. ArrayTrack<sup>TM</sup> is free to use and available to public, private, and academic researchers at <url>http://www.fda.gov/ArrayTrack</url>. </p

    Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art

    Get PDF
    PublishedJournal ArticleEarth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate-carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process-and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes. © 2013 Author(s).This paper emerged from the GREENCYCLESII mini-conference “Evaluation of Earth system models using modern and palaeo-observations” held at Clare College, Cambridge, UK, in September 2012. We would like to thank the Marie Curie FP7 Research and Training Network GREENCYCLESII for providing funding which made this meeting possible. Research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 238366. The work of C. D. Jones was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). N. R. Edwards acknowledges support from FP7 grant no. 265170 (ERMITAGE). N. Vázquez Riveiros acknowledges support from the AXA Research Fund and the Newton Trust

    Evaluating the quality of interaction between medical students and nurses in a large teaching hospital

    Get PDF
    BACKGROUND: Effective health care depends on multidisciplinary collaboration and teamwork, yet little is known about how well medical students and nurses interact in the hospital environment, where physicians-in-training acquire their first experiences as members of the health care team. The objective of this study was to evaluate the quality of interaction between third-year medical students and nurses during clinical rotations. METHODS: We surveyed 268 Indiana University medical students and 175 nurses who worked at Indiana University Hospital, the School's chief clinical training site. The students had just completed their third year of training. The survey instrument consisted of 7 items that measured "relational coordination" among members of the health care team, and 9 items that measured psychological distress. RESULTS: Sixty-eight medical students (25.4%) and 99 nurses (56.6%) completed the survey. The relational coordination score (ranked 1 to 5, low to high), which provides an overall measure of interaction quality, showed that medical students interacted with residents the best (4.16) and with nurses the worst (2.98; p < 0.01). Conversely, nurses interacted with other nurses the best (4.36) and with medical students the worst (2.68; p < 0.01). Regarding measures of psychological distress (ranked 0 to 4, low to high), the interpersonal sensitivity score of medical students (1.56) was significantly greater than that of nurses (1.03; p < 0.01), whereas the hostility score of nurses (0.59) was significantly greater than that of medical students (0.39; p < 0.01). CONCLUSION: The quality of interaction between medical students and nurses during third-year clinical rotations is poor, which suggests that medical students are not receiving the sorts of educational experiences that promote optimal physician-nurse collaboration. Medical students and nurses experience different levels of psychological distress, which may adversely impact the quality of their interaction

    Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing

    Get PDF
    Extent: 15p.BACKGROUND: Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. RESULTS: A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. CONCLUSIONS: The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species.Ling-Ling Gao, James K. Hane, Lars G. Kamphuis, Rhonda Foley, Bu-Jun Shi, Craig A. Atkins and Karam B. Sing

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
    corecore